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Abstract: Functional near-infrared spectroscopy (fNIRS) is increasingly used to investigate
different mental tasks for brain-computer interface (BCI) control due to its excellent environmental
and motion robustness. Feature extraction and classification strategy for fNIRS signal are essential
to enhance the classification accuracy of voluntarily controlled BCI systems. The limitation
of traditional machine learning classifiers (MLCs) lies in manual feature engineering, which is
considered as one of the drawbacks that reduce accuracy. Since the fNIRS signal is a typical
multivariate time series with multi-dimensionality and complexity, it makes the deep learning
classifier (DLC) ideal for classifying neural activation patterns. However, the inherent bottleneck
of DLCs is the requirement of substantial-scale, high-quality labeled training data and expensive
computational resources to train deep networks. The existing DLCs for classifying mental
tasks do not fully consider the temporal and spatial properties of fNIRS signals. Therefore, a
specifically-designed DLC is desired to classify multi-tasks with high accuracy in fNIRS-BCI.
To this end, we herein propose a novel data-augmented DLC to accurately classify mental tasks,
which employs a convolution-based conditional generative adversarial network (CGAN) for
data augmentation and a revised Inception-ResNet (rIRN) based DLC. The CGAN is utilized to
generate class-specific synthetic fNIRS signals to augment the training dataset. The network
architecture of rIRN is elaborately designed in accordance with the characteristics of the fNIRS
signal, with serial multiple spatial and temporal feature extraction modules (FEMs), where each
FEM performs deep and multi-scale feature extraction and fusion. The results of the paradigm
experiments show that the proposed CGAN-rIRN approach improves the single-trial accuracy
for mental arithmetic and mental singing tasks in both the data augmentation and classifier, as
compared to the traditional MLCs and the commonly used DLCs. The proposed fully data-driven
hybrid deep learning approach paves a promising way to improve the classification performance
of volitional control fNIRS-BCI.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Brain-computer interface (BCI) technology can bypass the peripheral nervous system and achieve
direct interaction between the human brain and external devices (computers and robotic arms,
etc.) by decoding the functional activity of the cerebral cortex [1]. Among the neuroimaging
modalities applied to BCI, fNIRS has attracted increasing attention due to its advantages as a
new non-invasive, portable, low-motion artifact, low-cost, and active measurement-based optical
neuroimaging technique with reasonable temporal and spatial resolution, quieter measurement
environment and superior motion robustness than functional magnetic resonance imaging (fMRI),
stronger environmental robustness and spatial resolution than electroencephalography (EEG)
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[2]. Due to the fact that hair induces attenuation of the fNIRS signal, the hairless prefrontal
cortex (PFC) becomes an ideal region of interest (ROI) for fNIRS measurements. In general,
the user intentionally elicits distinct, repeatable activation patterns in the PFC to control the
BCI output by performing different mental tasks, such as motor imagery [3], mental arithmetic
(MA) [4], mental singing (MS) [5], and puzzle solving [6], etc. This means that each mental
task corresponds to a volitional control state, which is decoded by the classifier to control the
BCI output. The motor imagery has been the most commonly used paradigm for BCI control in
previous fNIRS-BCI studies [7]. To investigate the suitability of different mental tasks besides
motor imagery for BCI control and to improve the discrimination accuracy of activation patterns,
two mental tasks for intentional control are performed, namely MA and MS [4]. This is because
the MA and MS tasks are the most widely used and robust mental tasks in fNIRS-BCI studies
[4,8]. The MA task in brain cognitive activity is an important thinking activity and skill in our
daily life, and it is closely related to language and working memory. The MS task, which can also
activate PFC, utilizes the positive emotional component of music. When users use and practice
the fNIRS-BCI system for a long time to operate peripheral devices, the learning effects and
cognitive fatigue across BCI trials can lead to a reduction in accuracy of the mental task. Hence,
to overcome these obstacles and to accurately detect and classify the activation patterns of the
PFC induced by different mental tasks is crucial for the development of fNIRS-BCI [9].

Feature extraction techniques and classification strategies for fNIRS signals are two important
aspects of improving the accuracy of mental tasks, which dramatically affects the performance
of BCI applications [10]. In the current research on fNIRS signal classification, many BCI
researchers have proposed a large number of classification algorithms, among which machine
learning classifiers (MLCs) based on manual feature extraction, such as linear discriminant
analysis (LDA) [11], support vector machine (SVM) [12], and adaptive Gaussian mixture model
[8,13], etc., have been extensively utilized in fNIRS-BCI due to their low computational cost and
relatively better classification performance. Nevertheless, the limitation of traditional MLCs lies
in manual feature engineering, involving feature extraction and selection, selection of optimal
feature subset, and data dimensionality reduction, which are considered to reduce the accuracy.
These inherent bottlenecks also cause many researchers to spend a substantial amount of time on
data pre-processing and feature extraction.

The fNIRS signal is a typical multivariate time series with multi-dimensionality and complexity,
which makes DLC an ideal alternative to overcome the above dilemma [10,14]. The fully data-
driven DLC is an automatic feature extractor and classifier that automatically extracts deep
features and discriminates subjects’ intentions from brain activation patterns captured in PFC
regions. The hemodynamic parameters reflecting the metabolism of cortical tissues are changes
in the concentrations of oxygenated hemoglobin (∆[HbO]), deoxygenated hemoglobin, and
total hemoglobin [7]. Hence, we can feed one of the above three hemodynamic signals (the
∆[HbO] signal is commonly used as its more pronounced amplitude changes can more sensitively
reflect changes in regional cerebral blood flow) or multiple ones (stacked by temporal or spatial
dimensions) to the DLC for fNIRS signal classification.

The purpose of using DLC in the volition-controlled fNIRS-BCI is to improve discrimination
accuracy for multi-class mental tasks. In the current research on DLCs applied to fNIRS
signal classification, this paper categorizes DLCs into univariate time series (UTS) based DLC,
multivariate time series (MTS) based DLC, and spectrogram (i.e., time-frequency representation)
based DLC according to the representation of the fNIRS signal fed to the DLC. In the UTS-DLCs
studies, Hiwa et al. performed a one-dimensional convolutional neural network (CNN) with
a convolutional layer and a pooling layer to classify the UTS-fNIRS signal for each sampling
location. The sampling with the highest accuracy was defined as the critical ROI, and the
generated label was used to discriminate the subject’s gender [15]. In another work, Yoo et
al. used a long short-term memory (LSTM) network to classify three mental tasks, involving
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MA, mental counting, and puzzle solving, in eight healthy subjects to reduce processing and
classification time, with a maximum accuracy of 83.3% compared to SVM and LDA [6]. In a
recent work, Asgher et al. increased the number of commands and adopted two DLCs, namely
CNN and LSTM, to classify four-level mental workload states, and the results demonstrated that
DLCs enhanced the accuracy compared to traditional MLCs (SVM, k-nearest neighbor, and
artificial neural network) with an average accuracy of 87.45% and 89.31%, respectively [16].
UTS-DLCs paving the way for the development of portable or wearable fNIRS-BCI systems
with a few sampling locations due to their high-speed data processing capabilities for the rapid
positioning and discrimination of critical ROI of neural activation in the brain. However, due
to the complexity and stochasticity of neural activation patterns, it also reveals that the flaw of
UTS-DLCs is that their input data do not have spatial distribution information and only use
a single sampling location with the highest accuracy to discriminate the differences in spatial
patterns, which leads to a significant degradation of accuracy [7].

How to make full use of the temporal and spatial distribution information of fNIRS signal
to more accurately discriminate complex hemodynamic pattern changes is an urgent problem
for DLCs applied to task classification in fNIRS-BCI. Hence, the crucial solution to the above
problem lies in the development of MTS-DLCs. In the MTS-DLCs studies, Trakoolwilaiwan et
al. proposed a CNN model for classifying three tasks of left- and right-handed motor execution
and resting state of eight subjects, and the results showed that the accuracy of the proposed
CNN was improved by 6.49% and 3.33% compared to the SVM and artificial neural network
methods, respectively [14]. The model is a variation on the CNN architecture commonly used
for image recognition. The input of the network is a two-dimensional (2D) matrix composed of
multi-sampling locations time series signals, but the size of its convolution kernels is not the
conventional size, its width covers the whole sampling location. The convolution kernel moves
only in the direction of the time dimension. The drawback of this CNN is that it only extracts the
shallow features of the entire spatial distribution information and cannot obtain the multi-scale
spatial features, and cannot unmix the contribution of samplings. In a recent work, Ma et al.
proposed the LSTM-Inception DLC for accurate classification of left- and right-handed motor
imagery [7]. The inception network architecture is proposed by Google for image recognition,
which improves the recognition performance by broadening the structure of the network [17].
The LSTM-Inception method uses a bottleneck layer to directly reduce the spatial dimensionality.
LSTM and Inception extract critical features for long and short intervals of one-dimensional
time series, respectively. This method is also ineffective in obtaining multi-scale spatial feature
information.

In the studies of spectrogram-based DLCs, inspired by EEG-DLCs, Janani et al. used
short-time Fourier transform to convert UTS into 2D spectrogram data for CNN classification
[10]. Although this spectrogram representation of fNIRS signal improves the classification
performance, the increased data dimensionality renders the computational complexity higher.
To sum up, most of the DLCs reviewed above focus on time series properties of the fNIRS
signal without fully considering the spatial distribution information. Besides the above three
DLCs based on signal representation, Saadati et al. proposed a spatial CNN to classify fNIRS
signals [18]. The spatially represented signal has only spatial distribution information but not
temporal correlation. Ghonchi et al. used a deep recurrent-CNN (RCNN) to classify synchronous
EEG-fNIRS signals [19]. The three convolutional layers and two LSTMs in the RCNN extract
the temporal and spatial features of the synchronous signals, respectively. The structure of RCNN
fully considers the spatio-temporal characteristics of synchronous signals, but does not make
special structural adjustments and designs according to the spatio-temporal diversity, and does
not have adaptive multi-scale feature extraction. Therefore, an elaborate DLC is desired for
multi-task and accurate classification of mental tasks in fNIRS-BCI.
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The other non-negligible problem is that DLC has an inherent bottleneck in that vast amount of
training data and computational resources are required to enable deep networks to be adequately
trained to prevent overfitting [20]. However, the collection of substantial-scale, high-quality
labeled fNIRS data is complex and expensive, or even impractical, when comprehensive
considering factors such as time, labor, and material costs, stability of the measurement system,
and the comfort of the subjects during long-term continuous measurements. Data augmentation
is a critical technique for tackling the issue of small sample datasets and the long-tail effect of
data (i.e., unbalanced data distribution) for DLC [21]. However, traditional data augmentation
approaches in image recognition, involving scaling, rotation, cropping, shifting, and other
geometric transformations are not applicable to multi-channel fNIRS data that do not have a
single-target [22]. Similarly, in the EEG-BCI study, empirical modal decomposition approaches
were used to augment the data for improving accuracy and reducing the time spent on rehabilitation
training [23]. With the development of artificial intelligence, generative adversarial networks
(GANs) are used to generate artificial samples to augment the training dataset and improve
the accuracy [24,25]. Based on the above, this study addresses two target concerns, namely
insufficient training data and accuracy improvement. We herein propose a novel data-augmented
DLC for classifying MTS-fNIRS signals, which combines conditional generative adversarial
network (CGAN) based data augmentation and rIRN-based DLC. The convolution-based CGAN
is utilized to generate class-specific synthetic fNIRS signal to augment training dataset, allowing
DLC to be fully trained. The rIRN network architecture is characterized by serial multiple
spatial-FEMs and temporal-FEMs, where each FEM performs deep and multi-scale feature
extraction and fusion, and the ResNet extracts global features and prevents gradient disappearance.

To demonstrate the feasibility and superiority of the proposed CGAN-rIRN approach for
improving the accuracy of mental tasks in fNIRS-BCI, the classification performance of the rIRN
approach was compared with that of traditional MLCs (SVM and LDA) and commonly used
DLCs (Inception-ResNet (IRN), CNN, and back propagation neural network (BPNN)) for MA
and MS mental tasks in eight subjects. In addition, the effect of different levels of augmented
training datasets on classification accuracy was also further analyzed.

2. Methods

The overall architecture of the CGAN-rIRN model is shown in Fig. 1. The CGAN-rIRN is a
hybrid with two deep learning models. The convolution-based CGAN model generates synthetic
fNIRS signals for augmenting the training dataset of the DLC, while the rIRN model is an
elaborate DLC for accurate classification of mental tasks in fNIRS-BCI.

For the input data of the hybrid network model, the raw light intensity signals are converted
into filtered ∆[HbO] signals using the modified Beer-Lambert Law (MBLL) [11] and band-pass
filtering (BPF) [26]. The filtered ∆[HbO] signals are randomly shuffled and divided into training
dataset, validation dataset, and test dataset in the split ratio of 4: 1: 1. The training dataset
is fed to CGAN for generating class-specific synthetic fNIRS signal. The real and synthetic
fNIRS signals are converted into graphics (i.e., stored as grayscale images) and combined into an
augmented training dataset, which is then fed into the rIRN-DLC model as an input layer.

2.1. Convolution-based CGAN model

Goodfellow et al. first presented the concept of GAN [27], which is broadly utilized in the
field of computer vision, such as face generation [28], due to its powerful generative power. In
recent years, GAN has also been adopted for data augmentation in the fNIRS-BCI field [24]. In
that study, the problem of gradient vanishing was solved by using Wasserstein GAN (WGAN).
However, the WGAN requires a separate run for each category of fNIRS signal to augment the
training dataset for that category of signal. If the number of fNIRS signal categories is too high,
the WGAN is too cumbersome to use and increases the computational complexity.
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Fig. 1. The overall architecture of the CGAN-rIRN model.

To interpret the artificial samples generated by the GAN and to avoid the computational
complexity of multiple runs of the algorithm, we herein propose a convolution-based CGAN
model to generate category-specific synthetic signal. The CGAN is a probabilistic generative
model with conditional constraints, which has an additional conditional variable y as auxiliary
information (category labels) for both the generator and the discriminator compared to GAN. Our
proposed CGAN architecture consists of two separate networks that are trained simultaneously, a
generator that generates synthetic fNIRS signal with the identical distribution and diversity as the
category-specific signal, and a discriminator that attempts to discriminate the synthetic fNIRS
signal from the real fNIRS signal, as illustrated in Fig. 2. The value function (objective function)
of CGAN can be expressed as the following maximum and minimum problem in Eq. (1):

min
G

max
D

[V(G, D)] = min
G

max
D

{Ex∼Preal(x),y∼P(y)[log D(x|y)]+Ez∼N(0,1),y∼P(y)[log(1−D(G(z|y)|y)]},
(1)

where x ∈ RT×C is the real signal (i.e., single-trial ∆[HbO] signal) with probability distribution
Preal(x), T is the number of sampling points in the single-trial fNIRS data, and C is the number
of sampling locations. In the present study, T is 160 (i.e., 40 s× 4 Hz) and C is 10. The y is
the category label with probability distribution P(y), which is attached to the generator and
discriminator through the embedding layer. z ∈ R1×100 is the random noise obeying the standard
normal distribution z ∼ N(0, 1), which is fed into the generator as an input layer. G(·) is the
generator which accepts noise z and embedded category labels y to generate synthetic fNIRS
signal, G(z|y) is the synthetic signal generated under the guidance of condition y. D(·) is the
discriminator that represents the probability of judging the data as real under condition y. E
denotes mathematical expectation. The settings of the loss functions for G(·) and D(·) can be
found in Gauthier’s study [28].

The generator is a transposed convolutional network consisting of a fully connected layer
(FCL) with 7680 neural nodes and three 2D transposed convolutional layers (T-Conv2D) with
filter numbers of 32, 16, and 1, respectively. The convolution kernel for the whole generator is
set to 3× 3, with a stride (the sliding step of the filter) of 2 except for the last T-Conv2D layer
which has a stride of 1. The output of the generator is the synthetic signal with a size of T×C
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Fig. 2. The architecture of the convolution-based CGAN model: (a) the generator, (b) the
discriminator.

and fed into the discriminator. The discriminator is a convolutional network consisting four 2D
convolutional layers (Conv2D) with filter numbers of 16, 16, 32, and 64, respectively, and two
FCLs with 320 and 1 neural nodes, respectively. Except the convolution kernel stride of the last
Conv2D layer is 1, all other strides are 2. The activation functions of all T-Conv2D and Conv2D
layers are set to the leaky rectified linear unit (LReLU) with a slope of 0.2, and the feature maps
obtained after T-Conv2D and Conv2D layers are batch normalized before activation.

In the training of CGAN, the input size of the generator is a z-vector with 100-dimension, the
input size of the discriminator is T×C matrix of real fNIRS signal (x) and synthetic fNIRS signal
(G(z|y)), and the training batch size is 4. The update of the weight coefficients of the generator
and the discriminator alternates in each epoch, updating one of them while the other remains
unchanged. The number of epochs is set to 500. The weight coefficients of both networks are
randomly initialized, and the gradient descent optimization algorithm is an adaptive moment
estimation optimizer [29] with a learning rate of 0.0002, where parameters β1 and β2 are set to
0.5 and 0.999, respectively.

2.2. Revised Inception-ResNet model

The proposed rIRN model is inspired by the Inception-ResNet network and combined with
the spatial and temporal characteristics of the fNIRS signal, as shown in Fig. 3. The overall
architecture of the rIRN model is shown in Fig. 3(a).

The spatial-FEMs consists of two sub-modules, namely spatial-FEM-A and spatial-FEM-B
modules, where each sub-modules comprises a spatial Inception-ResNet module and a spatial
reduction module. The spatial-FEM-A sub-module is shown in Fig. 3(b). The spatial Inception-
ResNet-A module consists of one-dimensional convolution filters with lengths of 3, 5, and 7 for
extracting spatial features at different scales, and it only slides along the spatial-dimension to
compute the convolution and the output dimension remains unchanged. Both the max-pooling
layer and the last layer of each feature extraction branch in the spatial-reduction-A module have a
stride of 2 to achieve spatial dimensionality reduction. The spatial-FEM-B module has a similar
structure to the spatial-FEM-A module, with the difference that its filters have lengths of 2 and 3,
and the number of all its convolution filters is 32, while that of spatial-FEM-A module is 16.

The temporal-FEMs consists of three sub-modules, which are constituted by temporal-FEM-A,
-B and -C modules. The temporal-FEM-A sub-module is illustrated in Fig. 3(c). The structure of
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Fig. 3. The architecture of the rIRN model. (a) Flow chart of the overall architecture of the
rIRN. (b) Spatial-FEM-A and spatial dimensionality reduction A modules. (c) Temporal-
FEM-A and temporal dimensionality reduction A modules. ReLU denotes rectified linear
unit. “Depth Concat” indicates depth concatenation layer.

each sub-module of the temporal-FEMs is similar to that of the spatial-FEMs. They differ in the
length and sliding direction of the filter, where the filter for temporal-FEMs only moves along the
direction of the temporal-dimension. Since the dimensionality of the time series in single-trial
fNIRS signal at high sampling rate is much larger than that of the spatial sampling locations,
the length of the convolution filter in multi-scale extraction of time-dimensional features is
longer than that of the spatial one. Therefore, the filter lengths of temporal Inception-ResNet-A
sub-module are 8, 16, and 32, respectively, those of -B sub-module are 4, 8, and 16, and those of
-C sub-module are 2, 4, and 8. As the temporal-dimension of the data is reduced after processing
by each sub-module of temporal-FEMs, the filter length of the later sub-module is shorter than
that of the previous one. The number of all filters for the temporal Inception-ResNet-A, -B, and
-C sub-modules are 16, 32, and 48, respectively. The structure of the temporal reduction module
is similar to that of the spatial one.

In the training process of the rIRN, the validation dataset is employed to examine the state
and convergence of the rIRN. Moreover, a random grid search method was used to explore the
different hyper-parameters of the rIRN to determine the optimal values with the best classification
performance [14]. The final hyper-parameters of the rIRN are set to a batch size of 32, a
maximum epoch of 100, an L2 regularization of 0.0001, and a learning rate of 0.001 or 0.0001
which is appropriately reduced to the lower one as the size of the training dataset increased
[30]. The adaptive moment estimation optimizer is used for the gradient descent optimization
algorithm. The CGAN-rIRN model is built using MATLAB R2020b (MathWorks, USA) on a
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64-bit operating system in Microsoft Windows 10. The training and testing conditions for the
CGAN and rIRN models are the same. The CGAN and rIRN models are trained and tested on
a server with 128GB RAM, two Intel Xeon Gold 6138 CPU @ 2.00 GHz, and a NVIDIA(R)
GeForce RTX 2080Ti GPU.

3. Experiments

3.1. Participants and data acquisition

Eight healthy right-handed participants (mean age: 25.4± 2.0 years, 2 males and 6 females)
were recruited from the students at Tianjin University for the experiments. None of the subjects
reported a history of any psychiatric, neurological, or brain disorder. All participants were asked
to refrain from drinking alcohol, smoking, and caffeinated beverages for 6 h prior to each data
collection procedure, and to relax previous to the experiment to stabilize blood flow. The study
was conducted with informed consent and received ethical approval from Tianjin University.

The fNIRS data were acquired using a lab-made portable continuous-wave diffuse optical
tomography system. The system adopts a phase-locked photon counting technique to achieve
fully parallel measurements at dual-wavelengths (785 nm and 830 nm) [31]. According to the
international 10-20 system, four laser diode source-pairs and four photomultiplier tube detectors
formed a single-lattice arrangement with 20 measured channels of raw light intensity (i.e., 10
sampling locations× 2 wavelengths per source-pair), which were then placed in the PFC using a
homemade flexible headband and covered with optode positioning points FP1 and FP2 to collect
fNIRS signals, as exhibited in Fig. 4(a). The source-detector distance was set to 30 mm and the
system sampling rate was set to 4 Hz, which ensures a high signal-to-noise ratio of the measured
data.

Fig. 4. Acquisition of fNIRS data. (a) Experimental source and detector configuration. (b)
Experimental paradigm.

3.2. Experimental protocol

The participants were asked not to move any part of the body, and performed MA and MS mental
tasks according to the instructions displayed on the screen during the data recording. In the MA
mental task, participants were asked to perform a sequence of simple mathematical calculations in
which a small number (between 9 and 15) was repeatedly subtracted from a randomly generated
three-digit number. In the MS mental task, participants silently rehearsed self-selected Chinese
song fragments that they felt would elicit within them a strong and positive emotional response,
but they were asked to choose the songs that they liked. They were instructed to try to feel
the emotions of the songs rather than simply memorize the lyrics or tune. In each trial, the
self-selected Chinese song was different for each participant, and its randomly generated from
the subject’s self-constructed song library.
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The schematic diagram of the experimental paradigm is depicted in Fig. 4(b). Each subject
was required to perform 24 data collection sessions on the same day, with a diagram of one of the
sessions shown in Fig. 4(b). A data collection session consisted of a 30 s pre-rest period (i.e.,
baseline period), six 40 s trials, where the first 20 s period of each trial was an MA or MS mental
task, followed by a 20 s rest period (alternating between MA and MS trials), followed by a 30 s
post-rest period. Data collection for all subjects was completed within one week. The fNIRS
optodes were not removed from the subjects during all data collection session. The total number
of trials collected per subject for each class of mental task was 72. Hence, the total number of
trials collected per subject was 144.

3.3. Signal pre-processing and feature extraction

The differential pathlength factor (DPF) in MBLL was set to DPF785 nm = 6.35 and DPF830 nm =
5.88 [32]. A 5th-order zero-phase Butterworth digital BPF with cut-off frequencies of 0.018 and
0.3 Hz was used to eliminate baseline drift, low-frequency oscillations, global systemic noise,
respiration, and high-frequency physiological interference (heartbeat) of the raw ∆[HbO] signal.
Ma et al. stated that the respiratory rate for adults is about 0.4 Hz [7]. Since the subjects recruited
were all adults (graduate students in college), the low-pass cut-off frequency of BPF was chosen
to be 0.3 Hz. Then, a 3rd-order least squares smoothing filter is adopted to the BPF-filtered data
to mitigate the oscillations of Mayer waves and the interference of random noise on the fNIRS
signal. The baseline calibration of the filtered ∆[HbO] signal for each session of each subject
uses the data from the baseline period under that session. The coefficient of variation was used to
assess the quality of the measured data [8]. If there were large motion artifacts in the measured
data, the data from this session were discarded and required to be remeasured [33]. The quality
assessment and re-measurement was done immediately after the session.

The filtered ∆[HbO] data were split into samples according to the single-trial period, in which
each sample consisted of 40 s of ∆[HbO] data, with 20 s task period and 20 s rest period. We
extracted the mean and slope features of ∆[HbO] data and normalized them to [0, 1] as inputs to
MLCs and BPNN, respectively. In our previous study, it was revealed that these two features can
yield better classification performance than the commonly used statistical features [8]. Due to
the small number of sampling locations under the optode distribution, there is no need to use
feature selection methods for dimensionality reduction. This is also to compare the classification
performance of DLCs and MLCs more fairly.

3.4. Controlled classification methodologies

The rIRN model was trained utilizing an augmented training dataset consisting of a real fNIRS
dataset and a synthetic fNIRS dataset. The data for the augmented training dataset is a fixed-size
graphics of 160× 10 without feature selection and normalized to [0, 1]. When the dimensionality
of the input data varies due to the number of sampling points and spatial sampling locations, the
rIRN model can adjust the length of the corresponding convolution filters and the number of
FEMs to achieve the best classification performance. The accuracy was used as an evaluation
metric to quantitatively evaluate the ability of the classifier to accurately discriminate between
mental tasks [25], as defined below:

Accuracy =
TP + TN

TP + FP + TN + FN
, (2)

where TP is the number of true positives, FP is the number of false positives, TN is the number
of true negatives, and FN is the number of false negatives. To demonstrate the efficiency
and superiority of the proposed CGAN-rIRN in enhancing the accuracy of mental tasks for
fNIRS-BCI, we compared traditional MLCs including LDA, SVM with linear kernel function and
regularization parameter of 1, and commonly used DLCs comprising IRN, CNNs, and BPNN.
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3.4.1. Inception-ResNet model

We compare the proposed rIRN model with the existing IRN model. The architecture of the IRN
takes reference from the Inception branch in the LSTM-Inception network proposed by Ma et
al. [7]. It has six Inception modules, where every three Inception modules have one residual
connection. Each Inception module has one-dimensional convolution filters with lengths of 10,
20, and 40, which are used for extract the feature information of time series with different lengths.
The difference between rIRN and IRN is that the former is carefully designed to extract features
at different scales in the spatial and temporal dimensions, respectively, while the latter is only
designed to extract feature information in the temporal dimension and does not capture deep
spatial feature information. In addition, rIRN has both spatial and temporal dimension reduction
modules. The size of the filter for each FEM of the rIRN is reduced accordingly as the depth of
the network increases in this dimension, while the size of the one-dimensional filter in IRN is
fixed and does not change with the deepening of the network.

3.4.2. Convolutional neural networks

The architecture of the control CNN classifier is referenced from the CNN model with two
convolutional layers (abbreviated as CNN-2 L) proposed by Trakoolwilaiwan et al. [14]. The
CNN-2 L consists of two convolutional layers, where the size of the filters in each layer is 3× 10
and 3× 1, respectively. All the filters shift only in the temporal-dimension of the input data.
The number of filters in each convolutional layer is 32 and 64, respectively. Each convolutional
layer is followed by a batch normalization layer, a ReLU layer, and a max-pooling layer with
stride of 2. The Dropout layer behind the last max-pooling layer has a probability of 0.2 to drop
out the input elements. Three FCL layers have 128, 16, and 2 hidden nodes, respectively. The
output layer is a softmax function. The optimal hyper-parameters in the CNN-2 L are set to a
learning rate of 0.001, a batch size of 16, and a maximum epoch of 100. To compare with the
proposed rIRN more fairly, we also use a CNN model with six convolutional layers (abbreviated
as CNN-6 L), which makes the two models similar in model complexity. The number of filters
for each convolutional layer of CNN-6 L is 16, 16, 16, 32, 32, and 32.

3.4.3. Back propagation neural network

The BPNN classifier has a hidden layer, and the optimal number of nodes in the hidden layer is
set according to the following modified empirical formula [34]:

nhid = ⌈log2(ninp)⌉ + a, (3)

where nhid and ninp are the number of nodes in the hidden layer and input layer, respectively. The
a (set to 2) is an integer within the range [1,10]. ⌈⌉ indicates that the ceiling is a rounding to
positive infinity operator. The BPNN uses a variable learning rate to accelerate the convergence
of the model, which is set as follows at the current iteration number t:

η(t) = ηmax − t(ηmax − ηmin)/tmax, (4)

where ηmax and ηmin denote the maximum and minimum learning rates of 0.01 and 0.00001
respectively, and tmax indicates the maximum iteration number of 1000. The stochastic gradient
descent method was used in the updating the weights and biases of the BPNN. The input to the
BPNN was the manually extracted features. To better evaluate the classification performance of
each classifier, the average accuracy obtained from three runs of the classifier on the test dataset
was used as the final evaluation of the model.
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3.5. Statistical analysis

A paired-samples t-test with a significance criterion of 0.05 are performed using OriginPro
2022b software (OriginLab Inc., Northampton, Massachusetts, USA) to statistically analysis the
classification accuracy of MA and MS mental tasks for all participants.

4. Results

4.1. Qualitative evaluation of the synthetic fNIRS signal

The quality of the synthetic fNIRS signal needs to be evaluated as it has a significant impact on
the training effectiveness of the classification model. To evaluate the quality of synthetic fNIRS
signal generated by the proposed convolution-based CGAN model (CGAN-CON), we compared
it with the full connection-based CGAN model (CGAN-FUL) in both qualitative and quantitative
terms in a fair manner. Both the generator and the discriminator of the CGAN-FUL model are
fully connected networks. The generator has three hidden layers with 256, 512, and 1024 nodes,
respectively. The number of nodes in each hidden layer of the discriminator is 1024, 512, and
256, respectively. The optimal hyper-parameter settings for the CGAN-FUL are batch size of 4,
learning rate of 0.0002, and epoch of 2000.

Figure 5 illustrates graphics (i.e., normalized grayscale images are converted into pseudo-color
images for visualization) of the real fNIRS signal collected by participant 1 in performing the MA
and MS mental tasks and the synthetic fNIRS signal generated by the two CGANs. As observed
from Fig. 5, the synthetic fNIRS signal generated by CGAN-CON has a crisp, high-resolution
graphic compared to the real fNIRS signal and is indistinguishable to the naked eye. However,
the quality of the synthetic fNIRS signal generated by CGAN-FUL is poor, with certain artifacts
and distortions.

Fig. 5. Graphical display of the real and synthetic fNIRS signals for MA and MS mental
tasks of participant 1: (a) real fNIRS signal, (b) synthetic fNIRS signal generated by
CGAN-FUL, (c) synthetic fNIRS signal generated by CGAN-CON. The color bar indicates
the normalized grayscale value.

To further compare the similarity of the synthetic fNIRS signals generated by the two CGANs
with the real fNIRS signal, the two middlemost sampling locations in the measurement region of
the source-detector configuration (i.e., sampling locations #5 and #6) were selected to visualize
the five trials averaged fNIRS signal to qualitatively analyze the quality of the synthetic signals.
Figure 6 shows the real and synthetic fNIRS signals averaged over five trials for representative
sampling locations of participant 1. The results demonstrate that the time-varying forms of
the synthetic fNIRS signals generated by CGAN-CON for MA and MS were consistent with
those of the real fNIRS signals. In contrast, the synthetic signals generated by CGAN-FUL had
larger fluctuations and were more different from the real fNIRS signal. In addition, during the
stimulus period, significant hemodynamic responses were observed between the synthetic signals
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generated by the two CGANs and the real fNIRS signals for samplings #5 and #6 of MA and
sampling #5 of MS. Although the amplitude of the hemodynamic response of the real fNIRS
signal for sampling #6 of MS is small, CGAN-CON can generate a synthetic signal with high
similarity to the real fNIRS signal, while no significant hemodynamic response was observed for
the synthetic signal of CGAN-FUL.

Fig. 6. Examples of five-trial averaged real and synthetic signals for sampling locations
#5 and #6 of participant 1 in the MA and MS mental tasks. The shades of the same color
around the curves represent the standard deviation. The gray highlighted rectangles indicate
the stimulus periods.

4.2. Quantitative evaluation of the synthetic fNIRS signal

We also quantitatively evaluated the quality of the synthetic fNIRS signals generated by the
proposed CGAN-CON with that of CGAN-FUL. Three commonly used evaluation metrics,
including maximum mean discrepancy (MMD) [35], structural similarity index measure (SSIM)
[36], and peak signal to noise ratio (PSNR) [36] were chosen to quantitatively evaluate the
signal quality generated by two CGANs. The MMD metric is widely used in transfer learning
to measure the distance between the distributions of two different random variables [37]. It is
utilized to measure the distance between the distribution of real and synthetic fNIRS datasets
for a particular category of task. The smaller the MMD distance, the smaller the discrepancy
between the two distributions. The mean MMD was calculated by randomly selecting 40 samples
from each participant’s real and synthetic dataset under each category of mental task.

The SSIM is a multi-scale structural similarity method for evaluating the closeness of the mean
luminance, contrast, and correlation of the real and synthetic fNIRS signals. The higher the
similarity between the graphics of the two fNIRS signals, with SSIM being closer to 1. The
PSNR is a widely used full-reference graphical quality evaluation metric. It is also utilized to
evaluate the quality of generated signal under a category-specific task. Obviously, the larger the
PSNR value, the smaller the difference between the real and synthetic fNIRS signals, further
indicating that the quality of the synthetic signal is better. 10 randomly selected real-synthetic
sample pairs were used to fairly calculate the mean SSIM and PSNR values for each subject under
a specific category. The 10 averaged SSIM and PSNR values were the final evaluation results for
this category of fNIRS signal.

The results of the quantitative comparison of the synthetic signals of MA and MS generated
by the two CGANs for all participants are shown in Fig. 7(a)-(c) and Fig. 7(d)-(f), respectively.
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As can be seen from the results, the mean MMD values across all subjects for the synthetic
MA (Fig. 7(a)) and MS (Fig. 7(d)) signals generated by CGAN-CON are lower than those of
CGAN-FUL. For the synthetic MA signals, the mean SSIM (Fig. 7(b)) and PSNR (Fig. 7(c))
values of CGAN-CON were higher than the results of CGAN-FUL. For the synthetic MS signal,
the results of CGAN-CON (Fig. 7(e)-(f)) are similarly higher than those of CGAN-FUL. There
were no significant differences in SSIM and PSNR metrics between the two CGANs for all subjects
in both MA and MS signals, indicating that their generated synthetic data have comparable
performance in terms of structural similarity and distortion compared to the real signal, with
no superiority or inferiority. Although, compared with the CGAN-FUL, the mean values of the
SSIM and PSNR metrics of CGAN-CON are higher, this does not completely indicate that its
performance is better than that of the CGAN-FUL. However, there are significant differences
between the two CGANs in terms of MMD metrics, further suggesting that the CGAN-CON
generated synthetic signal is closer to the distribution of the real signal. Therefore, the superior
performance of CGAN-CON over CGAN-FUL in terms of quality of generated signal is supported
by the results of the MMD metrics. Considering the three metrics together, we are still able
to draw the preliminary conclusion that CGAN-CON is superior to CGAN-FUL in generating
synthetic signal.

Fig. 7. Quantitative comparison of the synthetic fNIRS signals generated by the two CGAN
models. (a)-(c) MA mental task, (d)-(f) MS mental task. Black squares denote mean values.

The combined analysis of above qualitative and quantitative results of the synthetic MA and MS
signals both support that the CGAN-CON has better performance than CGAN-FUL to generate
high-quality fNIRS signals. Therefore, CGAN-CON was used as a data augmentation method
for fNIRS signals. The CGAN in CGAN-rIRN mentioned in this article refers to CGAN-CON
by default.

4.3. Effect of different levels of augmented training datasets

To verify the effectiveness and superiority of the proposed CGAN-rIRN method in improving
the accuracy of mental tasks, we analyzed the effects of different levels of augmented training
datasets on the single-trial accuracy of MLCs and DLCs by varying the amount of augmented
training data. The classifiers are trained and tested on each subject separately as a way to perform
subject-level decoding. The augmented training dataset consisted of measured original fNIRS
signal and augmented fNIRS signal generated by CGAN-CON, and it had the same amount of
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augmented data for each category of mental task. The notation “N” was used to denote the
number of original fNIRS training datasets, where the amount of measured data for both the MA
and MS tasks was N/2. N was set to 96 for each subject, i.e., 144 × (4/6) = 96. We analyzed the
effect of different sizes of augmented training datasets with dataset levels of 1.5N, 2N, 4N, 6N, 8N,
10N, 20N, 30N, and 40N on the accuracy of the classifier, and then compared the classification
performance between different classifiers under the same settings. For example, an augmented
training dataset with a 1.5N level comprises an original dataset of N level and an augmented
dataset with of 0.5N level.

The single-trial average accuracy across all subjects of each classifier on different levels of the
augmented training datasets is presented in Fig. 8. From the results of DLCs in Fig. 8(a), it can be
seen that the average accuracies of rIRN, IRN, CNN-2 L, and CNN-6 L increase with the number
of augmented training datasets when the level of augmented training datasets ≤ 2N, and their
maximum accuracies all appear at the dataset level of 2N. A further observation reveals that when
the level of augmented training datasets > 2N, their accuracy no longer increases but decreases
in fluctuation. However, the data augmentation did not improve the classification performance
of the BPNN based on manually extracted features. Comparing the results of CNN-2 L and
CNN-6 L reveals that CNN-6 L with a deeper network does not display a better classification
performance than CNN-2 L. The accuracy of the proposed rIRN was the highest among the above
four classifiers at different levels of augmented training datasets. The highest decoding accuracy
of rIRN was 92.19% at the dataset level of 2N.

Fig. 8. Effect of the different levels of augmented training datasets on single-trial accuracy
for (a) different DLCs and (b) different MLCs. “-Mean” and “-Slope” denote classifiers
based on the mean and slope features, respectively. The error bars on each data point indicate
the standard deviations. The black dashed line indicates 70% classification accuracy of
effective binary BCI communication.

From the results of the MLCs in Fig. 8(b), it can be seen that the proposed data augmentation
method only improves the accuracy of SVM-Mean, where the maximum improvement is 3.99%
at the dataset level of 4N. However, the results of the other MLCs show that their accuracies
were not effectively improved by the augmented training dataset, especially the LDA-Mean has
a significant decrease in accuracy. In addition, we also observe that the accuracy of MLCs
was mostly below 70%, except for the LDA-Mean accuracy at the level of augmented training
dataset ≤ 2N. Comparing the results in Figs. 8(a) and 8(b), it can be found that the accuracy
of rIRN was higher than that of the control other DLCs and all MLCs at all different levels of
augmented training dataset. This also further demonstrates the overwhelming decoding advantage
of the proposed rIRN method.
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4.4. Statistical analysis of the results before and after data augmentation

The maximum improvement in the accuracy of the proposed data augmentation approach to
most DLCs was at the 2N level of the training dataset. Therefore, the results of the average
decoding accuracy of each classification algorithm before and after data augmentation at this
level and the associated statistical information are illustrated in Fig. 9. As observed from the
results, the CGAN-CON-based data augmentation method has indeed improved the average
accuracy of the DLCs such as rIRN, IRN, CNN-2 L, and CNN-6 L by 20.95%, 6.65%, 6.27%,
and 4.51%, respectively, compared to the average accuracy based on the original dataset. This
result was consistent with the previous findings by Wickramaratne et al. [25]. However, the data
augmentation did not improve the accuracy of the BPNN. For the results of the MLCs, the data
augmentation marginally improves the average accuracy of SVM-Mean by 0.80% for the same
level of training dataset, while it did not enhance the accuracy of other MLCs. In the classification
results based on the original dataset, LDA-Mean had the highest accuracy of 79.69% among all
the classifiers. However, when the original training dataset was augmented by the CGAN-CON,
the accuracy of our proposed rIRN was significantly improved to 92.19%. The paired-sample
t-test yielded significant differences in the mean accuracy across all subjects between the rIRN
and the other control classification methods when the training dataset was augmented. Hence, the
proposed CGAN-rIRN approach turned out to be an effective and superior classification method
in accurately classifying MA and MS mental tasks.

Fig. 9. The average accuracy of each classifier before and after the training dataset
augmentation. The augmented dataset is at 2N level. The black and red bars indicate the
decoding accuracy based on the original and the augmented training datasets, respectively.
Error bars indicate the standard deviation, * represents the significant difference, empty: p >
0.05, *: 0.01 < p < 0.05, **: 0.001 < p < 0.01, ***: p < 0.001.

5. Discussions

5.1. Selection of evaluation method for classification models

Leave-one-out (LOO) [12] and k-fold cross-validation (CV) [14] methods are widely used in the
performance evaluation of classification models. The amount of available data and computing
resources are the two main concerns when choosing an evaluation method. The LOO-CV retains
a larger sample of data but is only suitable for small datasets because it is too costly to compute.
The k-fold CV method is usually used for relatively larger datasets. However, it is not suitable for
evaluating the deep rIRN on larger augmented datasets, considering computational complexity,
resources, and time. In addition, there are limitations to the above two CV methods when using
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augmented datasets to evaluate model performance. For the LOO-CV, the distribution of the
synthetic data is different from that of the real data, which may lead to a biased evaluation of the
synthetic data as a test set and does not fully reveal the true generalization ability of the model
on the original dataset. For k-fold CV, a similar problem is faced when dividing the augmented
dataset into k-folds for CV. This is because the distribution of data may also be different for each
fold, which ultimately affects the accuracy of the assessment results.

In summary, we divide the original signal dataset into a training set, a validation set, and
a test set. This is also a common approach in the field of deep learning [38]. The synthetic
data generated by the proposed CGAN-CON was only used to augment the training dataset.
The biggest advantage of this dataset segmentation method is that it is simple, fast, easy to
comprehend and implement for larger datasets with data augmentation. In this approach, the
model is constructed and trained using only the augmented training set, the real validation set
is used for hyper-parameter tuning and model selection, and finally the real test set is used to
evaluate the performance of the final model.

5.2. Overfitting problem

The overfitting problem can lead to a lack of generalization ability of the CGAN-rIRN. The
following measures have been taken to mitigate the effects of overfitting problems: (a) Data
augmentation. For the limited real training data of rIRN, the CGAN was used to augment the
amount of training data to mitigate the overfitting problem. (b) Regularization. We regularize the
parameters using the L2-norm to prevent overfitting of the model. (c) Early stopping. We stop
training if the validation loss does not decrease 20 times in a row to prevent the model overfitting
on the training set. (d) Dropout. We added a Dropout layer to the CGAN-rIRN to randomly
discard some neurons in the intermediate layers, thus reducing the possibility of overfitting. We
have experimentally validated the effectiveness of these strategies and will continue to explore
more effective approaches in future studies.

5.3. Classification results

To validate the effectiveness of the proposed CGAN-CON for data augmentation, we fairly
compared it with the CGAN-FUL. The results of the qualitative and quantitative comparison
of the synthetic fNIRS signals suggest that the proposed CGAN-CON has better performance
than CGAN-FUL in generating stable, diverse, and high-quality fNIRS signals. In addition,
previous study by Nagasawa et al. showed that the fNIRS signal generated by WGAN has an
additional noise component [24], whereas the proposed CGAN-CON generates a high-quality
smoothed signal that is highly similar to the real signal, as shown in Fig. 6. Although only a
fair comparison between CGAN-CON and CGAN-FUL has been made in this paper, our future
study will compare with more data augmentation methods to demonstrate the superiority of the
proposed data augmentation method.

The classification results for the MA and MS tasks in Fig. 8 demonstrate that the accuracy
of proposed rIRN was higher than that of the control DLCs and MLCs based on each of the
different levels of augmented datasets. The results further suggest that the rIRN can significantly
improve the accuracy of the mental task. The accuracy of rIRN increases with the number of
augmented training datasets when the level of augmented datasets was ≤ 2N, and it reaches the
maximum value of 92.19% at the 2N level. This regularity was also present in other DLCs (IRN,
CNN-2 L, and CNN-6 L), which suggested that augmenting the real signal with synthetic signal
can significantly improve the accuracy of DLCs except for the BPNN based on manual feature
extraction. Therefore, data augmentation is an effective strategy to improve the accuracy of DLCs
based on automatic feature extraction to classify fNIRS signals, which finding was consistent
with the study of Wickramaratne et al. [25]. When the level of the dataset was > 2N (i.e., the
proportion of augmented data in the augmented dataset was greater than the measured original
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data), the accuracy of DLCs decreases with the number of augmented datasets. It is possible that
the distributions of synthetic and real signal are closer, but not equivalent. When the number of
original signals in the augmented training dataset was less than that of the augmented signals,
the DLC learns more about the intrinsic patterns of the synthetic signal and overfits the original
signal, which eventually reduces the accuracy of the test data.

In our study, no consistent regularity was found in the effect of CGAN-CON-based data
augmentation on the accuracy of MLCs. The accuracy of SVM-Mean was slightly improved,
while that of the other MLCs was reduced. In other words, the preliminary conclusion is that data
augmentation does not have an enhancing effect on the accuracy of MLCs for the classifying MA
and MS tasks. This finding is different from the study by Nagasawa et al. where WGAN-based
data augmentation provided a large improvement in the classification performance of the SVM
[24].

The augmented dataset with 2N level has the highest accuracy improvement for DLCs,
with rIRN, IRN, CNN-2 L, and CNN-6 L achieving an average accuracy of 92.19± 6.29%,
83.53± 8.38%, 79.34± 8.73%, and 72.57± 9.36%, respectively, as shown in Fig. 9. Compared
with IRN (p= 0.86 × 10−2), CNN-2 L (p= 3.35 × 10−4), and CNN-6 L (p= 4.37 × 10−5), the
average accuracy of rIRN improved by 10.37%, 16.20%, and 27.04%, respectively. Therefore, our
proposed rIRN has more significant classification superiority compared to the CNN-2 L proposed
by Trakoolwilaiwan et al. [14]. The accuracy of CNN-2 L was higher than that of CNN-6 L for
both the original and augmented training datasets, which also demonstrates that simply increasing
the number of convolutional layers does not necessarily lead to an improvement in accuracy.
This finding is consistent with the results obtained by Trakoolwilaiwan et al. using CNNs with
different structures [14]. Therefore, fine-tuning the structure of deep learning networks was
a complex technical problem that heavily relies on the rich experience of the designer. The
elaborate design of the network structure and the choice of the optimal hyper-parameters were
also important factors affecting the classification performance of DLCs.

The learning rate in the gradient descent algorithm has a significant impact on the accuracy of
rIRN. The appropriate learning rate for rIRN was selected based on the size of the augmented
dataset. When the level of the augmented dataset is ≥ 20N, the learning rate was adjusted from
0.001 to 0.0001, which will result in a better accuracy of rIRN. This finding can also be analyzed
from the principle of the gradient descent algorithm when using the sum of squared errors as a
cost function [30].

5.4. Computational time

In a realistic application scenario, fNIRS-BCI system urgently requires a fast and efficient
classification method for real-time high-accuracy classification of fNIRS signals. To validate the
real-time classification performance of the developed fully data-driven rIRN-DLC approach, the
computation time of the model should be measured. The training times for both the DLC and MLC
models were computed with an augmented training dataset at 2N level and their hyper-parameters
were kept constant as described above. To simulate a real application environment, a single
sample was fed into the trained deep learning model with a batch size of 1 to calculate the testing
time. The training and testing times were averaged across all subjects.

The GPU computation times for each classification algorithm to classify MA and MS tasks
are shown in Table 1. The results show that the training and testing times for DLCs were more
time-consuming than that of MLCs. The training and testing times for LDA were slightly higher
than those for SVM, respectively. For the training process of the DLCs, the training time of
rIRN was 2.09, 19.11, 10.72, and 116.72 times greater than that of IRN, CNN-2 L, CNN-6 L,
and BPNN, respectively. For the testing time of all DLCs, the computation time of rIRN was
1.68, 6.08, 4.81, and 473.23 times higher than that of IRN, CNN-2 L, CNN-6 L, and BPNN,
respectively. Hence, the training and testing time of rIRN was more time-consuming than that of
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the control DLCs. This is due to the deeper and more complex network structure of the rIRN,
which is specifically-designed according to the characteristics of the fNIRS signal. Although
this designed architecture increases model and computational complexity, but it provides better
performance in classification accuracy.

Table 1. The GPU computation time (in s) for each classification algorithm

Time
Classification algorithms

rIRN IRN CNN-2L CNN-6L BPNN SVM LDA

Training time 511.25 244.26 26.75 47.69 4.38 5.70× 10−3 8.10× 10−3

Testing time 9.37× 10−2 5.57× 10−2 1.54× 10−2 1.95× 10−2 1.98× 10−4 2.68× 10−5 4.54× 10−5

If a sliding window with a smaller time window is used to feed real-time data to the rIRN,
this makes its prediction time shorter and will greatly satisfy the requirements of real-time BCI.
Therefore, the model can improve the accuracy, stability, response time, and efficiency of BCI
applications. It also provides strong support for real-time control tasks based on fNIRS signals,
and promotes the development of BCI technology applications in production and medical fields.

5.5. Future study

The proposed CGAN-rIRN is a pervasive multi-task classification approach that can adaptively
adjust the size of the spatio-temporal filters according to the fNIRS settings or recording
parameters. In different experimental paradigms and recording parameters, CGAN is able to
generate synthetic data with the same dimensional size as the real data from 100-dimensional
random noise. The rIRN can adaptively adjust the size of the spatial filter according to the number
of channels to achieve multi-scale spatial feature extraction, and can also adaptively adjust the
size of the temporal filter according to the sampling rate and the experimental paradigm of the
block design to perform multi-scale feature extraction in the temporal dimension. Therefore,
CGAN-rIRN can be applied to fNIRS data across diverse conditions.

This study has some limitations that will be tackled in the future study. First, we collected a
smaller sample of subjects from the student population in the data acquisition. To ensure relative
homogeneity, we should overcome the current difficulties and recruit more subjects from different
populations and ages. Second, the cognitive fatigue across trials plays an important role and
influence in the development of a multi-task fNIRS-BCI algorithm [39]. In future study, we should
add and improve on the following aspects: (a) the subjects’ fatigue levels can be systematically
quantified by attention tests, fatigue questionnaires, and physiological signal monitoring to assess
the subjects’ physical status and attention levels, (b) the changes in classification performance
at different time periods (e.g., earlier, middle, and later trials) during the experimental process
can be analyzed, which can provide a more comprehensive understanding of the performance
differences of the rIRN model across trials and effectively circumvent the uncertainty and error
caused by fatigue, and (c) compare the changes in classification performance between different
tasks and within each task separately to assess the effectiveness of the multi-task algorithm. These
expanded experiments can make the conclusions of this study more comprehensive and accurate,
and can also provide more valuable references for subsequent studies. Third, the comparison
of classification methods is adequate, but also incomplete. In the state-of-the-art classification
methods, LSTM [16] and RCNN [19] are also applied in the classification of fNIRS signals.
To more fully verify the superiority of the proposed rIRN, these two methods should also be
adequately compared with rIRN. Fourth, the CGAN-rIRN has achieved a significant improvement
in accuracy for intra-subject decoding mental tasks. However, cross-subject decoding is a future
direction for fNIRS-BCI and has been extensively investigated in the fields of fMRI [40] and EEG
[41]. In the future study, cross-subject fNIRS decoding will be an important application direction
for the rIRN. The leave-one-subject-out cross validation was used to evaluate the classification
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performance of the established subject-specific and population-wide classification models [42].
Fifth, transfer learning has also been frequently used in cross-subject decoding [20,43], so
combining rIRN and transfer learning for cross-subject fNIRS decoding is also a future study
direction for us. Sixth, the proposed CGAN-rIRN is a multi-task classification approach with
universality. To demonstrate the versatility and applicability of the rIRN in real-world BCI
scenarios, we should really consider classifying a broader range of mental tasks, such as word
generation, motor imagery, and tangram puzzle, etc [44]. Seventh, the quality assessment of the
synthetic data is comprehensive, but it can also be validated more comprehensively from the
perspective of statistical signal characterization. Statistical features, such as power spectrum and
autocorrelation function, can be extracted from the synthetic data and the real data for comparison.
In addition, we have only used the real and augmented datasets to train the classification model,
and also used a separate synthetic dataset to train the classifier to more fully analyze its impact
on the classification performance. In the data augmentation, the superiority of the CGAN-CON
needs more metrics to make a more comprehensive validation. Eighth, in order to adequately
assess the robustness of the rIRN model and the reproducibility of the classification results, more
suitable cross-validation methods should be considered.

6. Conclusion

We propose a fully data-driven hybrid deep learning approach, CGAN-rIRN, which aims to
accurately classify mental tasks in fNIRS-BCI. The CGAN-rIRN consists of two deep learning
models, one of which is a convolution-based CGAN model to generate category-specific fNIRS
single for data augmentation, and the other is an elaborate rIRN model for high-accuracy
classification of multivariate time series based fNIRS signals. The CGAN-CON and rIRN
models address the two challenges of insufficient fNIRS data for DLC training and accuracy
improvement, respectively. The effectiveness and superiority of the CGAN-rIRN was validated
by performing paradigm experiments. The results demonstrate that both CGAN-CON-based data
augmentation and specifically-designed rIRN enhance the accuracy of MA and MS mental tasks.
The CGAN-rIRN achieved a maximum average accuracy of 92% across all subjects, which was
obtained using augmented data of equal size to the original data. Overall, these encouraging
results demonstrate the potential of the CGAN-rIRN approach in improving the accuracy of
mental tasks and provide a new perspective for real-time multi-class mental task classification
in daily life and clinical applications. The approach can be used clinically for functional brain
imaging, localization, disease diagnosis, neurorehabilitation, and child development studies.
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